
VARIABLES AND COMPONENTS

CHAPTER 19

1

Topics

2

Topics
§ Variables in C#

2

Topics
§ Variables in C#

– Declaring and defining variables

2

Topics
§ Variables in C#

– Declaring and defining variables

§ Important C# Variable Types

2

Topics
§ Variables in C#

– Declaring and defining variables

§ Important C# Variable Types

§ Naming Conventions

2

Topics
§ Variables in C#

– Declaring and defining variables

§ Important C# Variable Types

§ Naming Conventions

§ Important Unity Variable Types

2

Topics
§ Variables in C#

– Declaring and defining variables

§ Important C# Variable Types

§ Naming Conventions

§ Important Unity Variable Types

§ Unity GameObject Components

2

Variables in C#

3

Variables in C#
§ Quick recap:

3

Variables in C#
§ Quick recap:

– A variable is a named container for data

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

– Assigning a value to a variable is called defining the variable

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

– Assigning a value to a variable is called defining the variable
• x = 5;

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

– Assigning a value to a variable is called defining the variable
• x = 5;

– A literal is a value that is entered into your code and can be
assigned to a variable

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

– Assigning a value to a variable is called defining the variable
• x = 5;

– A literal is a value that is entered into your code and can be
assigned to a variable

• The 5 above is an integer literal

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

– Assigning a value to a variable is called defining the variable
• x = 5;

– A literal is a value that is entered into your code and can be
assigned to a variable

• The 5 above is an integer literal
• string literals are surrounded by double quotes: "Hello World!"

3

Variables in C#
§ Quick recap:

– A variable is a named container for data
– Variables in C# are typed, so they can only hold one type of

data (e.g., an integer, a float, a string)
– Variables need to be declared to be used

• int x;

– Assigning a value to a variable is called defining the variable
• x = 5;

– A literal is a value that is entered into your code and can be
assigned to a variable

• The 5 above is an integer literal
• string literals are surrounded by double quotes: "Hello World!"
• float literals are followed by an f: 3.14f

3

Important C# Variable Types

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character
– bool

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character
– bool
– int

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character
– bool
– int
– float

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character
– bool
– int
– float
– char

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character
– bool
– int
– float
– char
– string

4

Important C# Variable Types
§ Core C# variable types start with a lowercase

character
– bool
– int
– float
– char
– string
– class

4

Important C# Variable Types

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean
– Named after George Boole (an English mathematician)

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean
– Named after George Boole (an English mathematician)
– bools in C# actually use more than 1-bit of space

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean
– Named after George Boole (an English mathematician)
– bools in C# actually use more than 1-bit of space

• The smallest addressable memory chunk on a 32-bit system is 32
bits.

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean
– Named after George Boole (an English mathematician)
– bools in C# actually use more than 1-bit of space

• The smallest addressable memory chunk on a 32-bit system is 32
bits.

• The smallest on a 64-bit system is 64 bits.

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean
– Named after George Boole (an English mathematician)
– bools in C# actually use more than 1-bit of space

• The smallest addressable memory chunk on a 32-bit system is 32
bits.

• The smallest on a 64-bit system is 64 bits.

– Literal examples: true false

5

Important C# Variable Types
§ bool – A 1-bit True or False Value

– Short for Boolean
– Named after George Boole (an English mathematician)
– bools in C# actually use more than 1-bit of space

• The smallest addressable memory chunk on a 32-bit system is 32
bits.

• The smallest on a 64-bit system is 64 bits.

– Literal examples: true false
– bool verified = true;

5

Important C# Variable Types

6

Important C# Variable Types
§ int – A 32-bit Integer

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number
• Integers are numbers with no fractional or decimal element

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number
• Integers are numbers with no fractional or decimal element

– int math is very fast and accurate

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number
• Integers are numbers with no fractional or decimal element

– int math is very fast and accurate
– Can store numbers between –2,147,483,648 and

2,147,483,647

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number
• Integers are numbers with no fractional or decimal element

– int math is very fast and accurate
– Can store numbers between –2,147,483,648 and

2,147,483,647
– 31 bits used for number and 1 bit used for sign

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number
• Integers are numbers with no fractional or decimal element

– int math is very fast and accurate
– Can store numbers between –2,147,483,648 and

2,147,483,647
– 31 bits used for number and 1 bit used for sign
– Literal examples: 1 34567 -48198

6

Important C# Variable Types
§ int – A 32-bit Integer

– Stores a single integer number
• Integers are numbers with no fractional or decimal element

– int math is very fast and accurate
– Can store numbers between –2,147,483,648 and

2,147,483,647
– 31 bits used for number and 1 bit used for sign
– Literal examples: 1 34567 -48198
– int nonFractionalNumber = 12345;

6

Important C# Variable Types

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)
• 1 bit determines whether the number is positive or negative

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)
• 1 bit determines whether the number is positive or negative

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)
• 1 bit determines whether the number is positive or negative

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)
• 1 bit determines whether the number is positive or negative

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

– Literal examples: 3.14f 123f 123.456f

7

Important C# Variable Types
§ float – A 32-bit Decimal Number

– Stores a floating-point number with a decimal element
• A floating-point number is stored in something like scientific notation
• Scientific notation is numbers in the format a*10b: 300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)
• 1 bit determines whether the number is positive or negative

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

– Literal examples: 3.14f 123f 123.456f

– float notPreciselyOneThird = 1.0f / 3.0f;

7

Important C# Variable Types

8

Important C# Variable Types
§ char – A 16-bit Character

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

– Uppercase and lowercase letters are different values!

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

– Uppercase and lowercase letters are different values!
– char literals are surrounded by single quotes

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

– Uppercase and lowercase letters are different values!
– char literals are surrounded by single quotes
– Literal examples: 'A' 'a' '\t'

8

Important C# Variable Types
§ char – A 16-bit Character

– Single character represented by 16 bits of information
– Uses Unicode values for the characters

• Unicode represents 110,000 different characters from over 100
different character sets and languages

– Floats are inaccurate for large numbers and for numbers
between -1 and 1

• There is no accurate float representation for 1 / 3

– Uppercase and lowercase letters are different values!
– char literals are surrounded by single quotes
– Literal examples: 'A' 'a' '\t'
– char theLetterA = 'A';

8

Important C# Variable Types

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access
• char theCharW = theFirstLineOfHamlet[0];

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access
• char theCharW = theFirstLineOfHamlet[0];
• char questionMark = theFirstLineOfHamlet[11];

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access
• char theCharW = theFirstLineOfHamlet[0];
• char questionMark = theFirstLineOfHamlet[11];

– The length of a string is accessed via .Length

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access
• char theCharW = theFirstLineOfHamlet[0];
• char questionMark = theFirstLineOfHamlet[11];

– The length of a string is accessed via .Length
• int len = theFirstLineOfHamlet.Length;

9

Important C# Variable Types
§ string – A Series of 16-bit Characters

– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples: "Hello" "" "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access
• char theCharW = theFirstLineOfHamlet[0];
• char questionMark = theFirstLineOfHamlet[11];

– The length of a string is accessed via .Length
• int len = theFirstLineOfHamlet.Length;

– Sets len to 12

9

Important C# Variable Types

10

Important C# Variable Types
§ class – A Collection of Functions and Data

10

Important C# Variable Types
§ class – A Collection of Functions and Data

– A class creates a new variable type

10

Important C# Variable Types
§ class – A Collection of Functions and Data

– A class creates a new variable type
– Covered extensively in Chapter 25, "Classes"

10

Important C# Variable Types
§ class – A Collection of Functions and Data

– A class creates a new variable type
– Covered extensively in Chapter 25, "Classes"
– Already used in the HelloWorld project

public class HelloWorld : MonoBehaviour {

! void Start() {

! ! print("Hello World!");

! }

}

10

Important C# Variable Types
§ class – A Collection of Functions and Data

– A class creates a new variable type
– Covered extensively in Chapter 25, "Classes"
– Already used in the HelloWorld project

public class HelloWorld : MonoBehaviour {

! void Start() {

! ! print("Hello World!");

! }

}

– Everything between the braces { } is part of the class

10

C# Naming Conventions

11

C# Naming Conventions
§ Use camelCase for almost everything

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

§ Class names start with uppercase:

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

§ Class names start with uppercase:
– SomeClass GameObject HeroShip

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

§ Class names start with uppercase:
– SomeClass GameObject HeroShip

§ Private variables start with underscore:

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

§ Class names start with uppercase:
– SomeClass GameObject HeroShip

§ Private variables start with underscore:
– _privateVariable _hiddenVariable

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

§ Class names start with uppercase:
– SomeClass GameObject HeroShip

§ Private variables start with underscore:
– _privateVariable _hiddenVariable

§ Static variables use SNAKE_CASE:

11

C# Naming Conventions
§ Use camelCase for almost everything

§ Variable names start with lowercase:
– thisVariable anotherVariable bob

§ Function names start with uppercase:
– ThatFunction() Start() Update()

§ Class names start with uppercase:
– SomeClass GameObject HeroShip

§ Private variables start with underscore:
– _privateVariable _hiddenVariable

§ Static variables use SNAKE_CASE:
– STATIC_VAR NUM_INSTANCES

11

Important Unity Variable Types

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3
– Color

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3
– Color
– Quaternion

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3
– Color
– Quaternion
– Mathf

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3
– Color
– Quaternion
– Mathf
– Screen

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3
– Color
– Quaternion
– Mathf
– Screen
– SystemInfo

12

Important Unity Variable Types
§ Because they are classes, important Unity variable

types all start with an uppercase character
– Vector3
– Color
– Quaternion
– Mathf
– Screen
– SystemInfo
– GameObject

12

Important Unity Variable Types

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

– Used for position of objects in 3D

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

– Used for position of objects in 3D
! Vector3 vec = new Vector3(3, 4, 0);

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

– Used for position of objects in 3D
! Vector3 vec = new Vector3(3, 4, 0);

– Instance variables and functions
! vec.x – The x component of the vector
" vec.y – The y component of the vector
" vec.z – The z component of the vector
" vec.magnitude – The length of the vector
" vec.Normalize() – New Vector3 in the same direction at unit length

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

– Used for position of objects in 3D
! Vector3 vec = new Vector3(3, 4, 0);

– Instance variables and functions
! vec.x – The x component of the vector
" vec.y – The y component of the vector
" vec.z – The z component of the vector
" vec.magnitude – The length of the vector
" vec.Normalize() – New Vector3 in the same direction at unit length

– Static class variables and functions

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

– Used for position of objects in 3D
! Vector3 vec = new Vector3(3, 4, 0);

– Instance variables and functions
! vec.x – The x component of the vector
" vec.y – The y component of the vector
" vec.z – The z component of the vector
" vec.magnitude – The length of the vector
" vec.Normalize() – New Vector3 in the same direction at unit length

– Static class variables and functions
! Vector3.zero – Shorthand for new Vector3(0, 0, 0);

13

Important Unity Variable Types
§ Vector3 – A collection of 3 floats

– Used for position of objects in 3D
! Vector3 vec = new Vector3(3, 4, 0);

– Instance variables and functions
! vec.x – The x component of the vector
" vec.y – The y component of the vector
" vec.z – The z component of the vector
" vec.magnitude – The length of the vector
" vec.Normalize() – New Vector3 in the same direction at unit length

– Static class variables and functions
! Vector3.zero – Shorthand for new Vector3(0, 0, 0);
" Vector3.Dot(vA, vB); – Dot product of vA and vB

13

Important Unity Variable Types

14

Important Unity Variable Types
§ Color – A color with transparency information

14

Important Unity Variable Types
§ Color – A color with transparency information

– 4 floats for red, green, blue, and alpha (all between 0 and 1)

14

Important Unity Variable Types
§ Color – A color with transparency information

– 4 floats for red, green, blue, and alpha (all between 0 and 1)
! Color col = new Color(0.5f, 0.5f, 0, 1f);

14

Important Unity Variable Types
§ Color – A color with transparency information

– 4 floats for red, green, blue, and alpha (all between 0 and 1)
! Color col = new Color(0.5f, 0.5f, 0, 1f);

! Color col = new Color(1f, 0f, 0f); // Alpha is optional

– In the Unity color picker, the RGBA values are in the range
0–255. These are then mapped to 0–1f.

– Instance variables and functions
! col.r – The red component of the vector
" col.g – The green component of the vector
" col.b – The blue component of the vector

14

Important Unity Variable Types
§ Color – A color with transparency information

– 4 floats for red, green, blue, and alpha (all between 0 and 1)
! Color col = new Color(0.5f, 0.5f, 0, 1f);

! Color col = new Color(1f, 0f, 0f); // Alpha is optional

– In the Unity color picker, the RGBA values are in the range
0–255. These are then mapped to 0–1f.

– Instance variables and functions
! col.r – The red component of the vector
" col.g – The green component of the vector
" col.b – The blue component of the vector
" col.a – The alpha component of the vector

14

Important Unity Variable Types

15

Important Unity Variable Types
§ Color – A color with transparency information

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black = new Color(0, 0, 0, 1); // Solid black

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black = new Color(0, 0, 0, 1); // Solid black
Color.white = new Color(1, 1, 1, 1); // Solid white

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black = new Color(0, 0, 0, 1); // Solid black
Color.white = new Color(1, 1, 1, 1); // Solid white
Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black = new Color(0, 0, 0, 1); // Solid black
Color.white = new Color(1, 1, 1, 1); // Solid white
Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray
Color.grey = new Color(0.5f, 0.5f, 0.5f, 1) // British spelling of gray

15

Important Unity Variable Types
§ Color – A color with transparency information

– Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red = new Color(1, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(1, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow = new Color(1, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black = new Color(0, 0, 0, 1); // Solid black
Color.white = new Color(1, 1, 1, 1); // Solid white
Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray
Color.grey = new Color(0.5f, 0.5f, 0.5f, 1) // British spelling of gray
Color.clear = new Color(0, 0, 0, 0); // Completely transparent

15

Important Unity Variable Types

16

Important Unity Variable Types
§ Quaternion – Rotation information

16

Important Unity Variable Types
§ Quaternion – Rotation information

– Based on three imaginary numbers and a scalar

16

Important Unity Variable Types
§ Quaternion – Rotation information

– Based on three imaginary numbers and a scalar
– So, everyone uses Euler angles (e.g., x, y, z) to input rotation

16

Important Unity Variable Types
§ Quaternion – Rotation information

– Based on three imaginary numbers and a scalar
– So, everyone uses Euler angles (e.g., x, y, z) to input rotation

! Quaternion up45Deg = Quaternion.Euler(-45, 0, 0);

– In Euler (pronounced "oiler") angles, x, y, & z are rotations
about those respective axes

– Quaternions are much better for interpolation and
calculations than Euler angles

• They also avoid Gimbal Lock (where two Euler axes align)

– Instance variables and functions

16

Important Unity Variable Types
§ Quaternion – Rotation information

– Based on three imaginary numbers and a scalar
– So, everyone uses Euler angles (e.g., x, y, z) to input rotation

! Quaternion up45Deg = Quaternion.Euler(-45, 0, 0);

– In Euler (pronounced "oiler") angles, x, y, & z are rotations
about those respective axes

– Quaternions are much better for interpolation and
calculations than Euler angles

• They also avoid Gimbal Lock (where two Euler axes align)

– Instance variables and functions
! up45Deg.eulerAngles – A Vector3 of the Euler rotations

16

Important Unity Variable Types

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)

Mathf.Round(1.75f);// 2, rounds up or down to the nearest number

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)

Mathf.Round(1.75f);// 2, rounds up or down to the nearest number

Mathf.Ceil(1.75f); // 2, rounds up to the next highest integer number

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)

Mathf.Round(1.75f);// 2, rounds up or down to the nearest number

Mathf.Ceil(1.75f); // 2, rounds up to the next highest integer number

Mathf.Floor(1.75f);// 1, rounds down to the next lowest integer number

17

Important Unity Variable Types
§ Mathf – A collection of static math functions

– Static class variables and functions
Mathf.Sin(x); // Computes the sine of x

Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to  
 // change something facing along the x-axis to face  
 // instead toward the point x, y.

print(Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)

Mathf.Round(1.75f);// 2, rounds up or down to the nearest number

Mathf.Ceil(1.75f); // 2, rounds up to the next highest integer number

Mathf.Floor(1.75f);// 1, rounds down to the next lowest integer number

Mathf.Abs(-25); // 25, the absolute value of -25

17

Important Unity Variable Types

18

Important Unity Variable Types
§ Screen – Information about the display

18

Important Unity Variable Types
§ Screen – Information about the display

– Static class variables and functions

18

Important Unity Variable Types
§ Screen – Information about the display

– Static class variables and functions
! Screen.width! ! // The width of the screen in pixels

18

Important Unity Variable Types
§ Screen – Information about the display

– Static class variables and functions
! Screen.width! ! // The width of the screen in pixels
" Screen.height!! // The height of the screen in pixels

18

Important Unity Variable Types
§ Screen – Information about the display

– Static class variables and functions
! Screen.width! ! // The width of the screen in pixels
" Screen.height!! // The height of the screen in pixels
" Screen.showCursor = false;!! // Hide the cursor

18

Important Unity Variable Types

19

Important Unity Variable Types
§ SystemInfo – Information about the device/computer

19

Important Unity Variable Types
§ SystemInfo – Information about the device/computer

– Static class variables and functions

19

Important Unity Variable Types
§ SystemInfo – Information about the device/computer

– Static class variables and functions
! SystemInfo.operatingSystem!// The width of the screen in pixels 
! ! ! ! ! // e.g., Mac OS X 10.9.3

19

Important Unity Variable Types
§ SystemInfo – Information about the device/computer

– Static class variables and functions
! SystemInfo.operatingSystem!// The width of the screen in pixels 
! ! ! ! ! // e.g., Mac OS X 10.9.3
! SystemInfo.systemMemorySize! // Amount of RAM

19

Important Unity Variable Types
§ SystemInfo – Information about the device/computer

– Static class variables and functions
! SystemInfo.operatingSystem!// The width of the screen in pixels 
! ! ! ! ! // e.g., Mac OS X 10.9.3
! SystemInfo.systemMemorySize! // Amount of RAM
! SystemInfo.supportsAccelerometer! // Has accelerometer

19

Important Unity Variable Types
§ SystemInfo – Information about the device/computer

– Static class variables and functions
! SystemInfo.operatingSystem!// The width of the screen in pixels 
! ! ! ! ! // e.g., Mac OS X 10.9.3
! SystemInfo.systemMemorySize! // Amount of RAM
! SystemInfo.supportsAccelerometer! // Has accelerometer
! SystemInfo.supportsGyroscope! // Has gyroscope

19

Important Unity Variable Types

20

Important Unity Variable Types
§ GameObject – Base class for all objects in scenes

20

Important Unity Variable Types
§ GameObject – Base class for all objects in scenes

– Composed of components

20

Important Unity Variable Types
§ GameObject – Base class for all objects in scenes

– Composed of components
! GameObject go = new GameObject("MyGO");

20

Important Unity Variable Types
§ GameObject – Base class for all objects in scenes

– Composed of components
! GameObject go = new GameObject("MyGO");

– Always has a Transform component
– Instance variables and functions

! go.name! // The name of the GameObject ("MyGO")
" go.GetComponent<Transform>() // The Transform component
" go.transform! ! // A shortcut to the Transform component
" go.SetActive(false)! // Make this GameObject inactive

20

Important Unity Variable Types
§ GameObject – Base class for all objects in scenes

– Composed of components
! GameObject go = new GameObject("MyGO");

– Always has a Transform component
– Instance variables and functions

! go.name! // The name of the GameObject ("MyGO")
" go.GetComponent<Transform>() // The Transform component
" go.transform! ! // A shortcut to the Transform component
" go.SetActive(false)! // Make this GameObject inactive
" go.name! // The name of the GameObject ("MyGO")

20

Important Unity Variable Types
§ GameObject – Base class for all objects in scenes

– Composed of components
! GameObject go = new GameObject("MyGO");

– Always has a Transform component
– Instance variables and functions

! go.name! // The name of the GameObject ("MyGO")
" go.GetComponent<Transform>() // The Transform component
" go.transform! ! // A shortcut to the Transform component
" go.SetActive(false)! // Make this GameObject inactive
" go.name! // The name of the GameObject ("MyGO")

– GetComponent<>() is a generic method that can be used to
access any component attached to a GameObject

20

Unity GameObject Components

21

GameObjects are composed of Components

Unity GameObject Components

22

Unity GameObject Components
§ Transform component

22

Unity GameObject Components
§ Transform component

– Controls position, rotation, and scale

22

Unity GameObject Components
§ Transform component

– Controls position, rotation, and scale
! Transform tr = go.GetComponent<Transform>();

22

Unity GameObject Components
§ Transform component

– Controls position, rotation, and scale
! Transform tr = go.GetComponent<Transform>();

– Also controls hierarchy of objects in the scene
! tr.parent! // The parent of this transform in the hierarchy

– Children can be iterated over with a foreach loop
! foreach (Transform tChild in tr) {…}

– Instance variables and functions
! tr.position! ! // The position in world coordinates

22

Unity GameObject Components
§ Transform component

– Controls position, rotation, and scale
! Transform tr = go.GetComponent<Transform>();

– Also controls hierarchy of objects in the scene
! tr.parent! // The parent of this transform in the hierarchy

– Children can be iterated over with a foreach loop
! foreach (Transform tChild in tr) {…}

– Instance variables and functions
! tr.position! ! // The position in world coordinates
" tr.localPosition! // The position relative to its parent

22

Unity GameObject Components
§ Transform component

– Controls position, rotation, and scale
! Transform tr = go.GetComponent<Transform>();

– Also controls hierarchy of objects in the scene
! tr.parent! // The parent of this transform in the hierarchy

– Children can be iterated over with a foreach loop
! foreach (Transform tChild in tr) {…}

– Instance variables and functions
! tr.position! ! // The position in world coordinates
" tr.localPosition! // The position relative to its parent
" tr.rotation ! // The rotation in world coordinates

22

Unity GameObject Components
§ Transform component

– Controls position, rotation, and scale
! Transform tr = go.GetComponent<Transform>();

– Also controls hierarchy of objects in the scene
! tr.parent! // The parent of this transform in the hierarchy

– Children can be iterated over with a foreach loop
! foreach (Transform tChild in tr) {…}

– Instance variables and functions
! tr.position! ! // The position in world coordinates
" tr.localPosition! // The position relative to its parent
" tr.rotation ! // The rotation in world coordinates
" tr.localScale!! // The scale (always in local coordinates)

22

Unity GameObject Components

23

Unity GameObject Components
§ MeshFilter component

23

Unity GameObject Components
§ MeshFilter component

– The model that you see

23

Unity GameObject Components
§ MeshFilter component

– The model that you see
! MeshFilter mf = go.GetComponent<MeshFilter>();

23

Unity GameObject Components
§ MeshFilter component

– The model that you see
! MeshFilter mf = go.GetComponent<MeshFilter>();

– Attaches a 3D model to a GameObject
– Is actually a 3D shell of the object (3D objects in games are

hollow inside
– This MeshFilter is rendered on screen by a MeshRenderer

component

23

Unity GameObject Components

24

Unity GameObject Components
§ Renderer component

24

Unity GameObject Components
§ Renderer component

– Draws the GameObject on screen

24

Unity GameObject Components
§ Renderer component

– Draws the GameObject on screen
! Renderer rend = go.GetComponent<Renderer>();

24

Unity GameObject Components
§ Renderer component

– Draws the GameObject on screen
! Renderer rend = go.GetComponent<Renderer>();

– Usually, this is a MeshRenderer
• Renderer is the superclass for MeshRenderer
• So, Renderer is almost always used in code

24

Unity GameObject Components
§ Renderer component

– Draws the GameObject on screen
! Renderer rend = go.GetComponent<Renderer>();

– Usually, this is a MeshRenderer
• Renderer is the superclass for MeshRenderer
• So, Renderer is almost always used in code

– Combines the MeshFilter with a Material (which contains
various Textures and a Shader)

24

Unity GameObject Components

25

Unity GameObject Components
§ Collider component

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.
• Box Collider – A rectangular solid. Useful for crates, cars, torsos, etc.

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.
• Box Collider – A rectangular solid. Useful for crates, cars, torsos, etc.
• Mesh Collider – Collider formed from a MeshFilter. Much slower!

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.
• Box Collider – A rectangular solid. Useful for crates, cars, torsos, etc.
• Mesh Collider – Collider formed from a MeshFilter. Much slower!

– Only convex Mesh Collider can collide with other Mesh Colliders

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.
• Box Collider – A rectangular solid. Useful for crates, cars, torsos, etc.
• Mesh Collider – Collider formed from a MeshFilter. Much slower!

– Only convex Mesh Collider can collide with other Mesh Colliders
– Much, much slower than the other three types

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.
• Box Collider – A rectangular solid. Useful for crates, cars, torsos, etc.
• Mesh Collider – Collider formed from a MeshFilter. Much slower!

– Only convex Mesh Collider can collide with other Mesh Colliders
– Much, much slower than the other three types

– Unity physics are performed by the NVIDIA PhysX engine

25

Unity GameObject Components
§ Collider component

– The physical presence of the GameObejct
! Collider coll = go.GetComponent<Collider>();

– There are four types of collider (in order of complexity)
• Sphere Collider – The fastest type. A ball or sphere.
• Capsule Collider – A pipe with spheres at each end. 2nd fastest.
• Box Collider – A rectangular solid. Useful for crates, cars, torsos, etc.
• Mesh Collider – Collider formed from a MeshFilter. Much slower!

– Only convex Mesh Collider can collide with other Mesh Colliders
– Much, much slower than the other three types

– Unity physics are performed by the NVIDIA PhysX engine
– Colliders will not move without a Rigidbody component

25

Unity GameObject Components

26

Unity GameObject Components
§ Rigidbody component

26

Unity GameObject Components
§ Rigidbody component

– The physical simulation of the GameObject

26

Unity GameObject Components
§ Rigidbody component

– The physical simulation of the GameObject
! Rigidbody rigid = go.GetComponent<Rigidbody>();

26

Unity GameObject Components
§ Rigidbody component

– The physical simulation of the GameObject
! Rigidbody rigid = go.GetComponent<Rigidbody>();

– Handles velocity, bounciness, friction, gravity, etc.
– Updates every FixedUpdate()

• This is exactly 50 times per second

26

Unity GameObject Components
§ Rigidbody component

– The physical simulation of the GameObject
! Rigidbody rigid = go.GetComponent<Rigidbody>();

– Handles velocity, bounciness, friction, gravity, etc.
– Updates every FixedUpdate()

• This is exactly 50 times per second

– If Rigidbody isKinematic == true, the collider will move, but
position will not change automatically due to velocity

26

Unity GameObject Components
§ Rigidbody component

– The physical simulation of the GameObject
! Rigidbody rigid = go.GetComponent<Rigidbody>();

– Handles velocity, bounciness, friction, gravity, etc.
– Updates every FixedUpdate()

• This is exactly 50 times per second

– If Rigidbody isKinematic == true, the collider will move, but
position will not change automatically due to velocity

! rigid.isKinematic = true;! // rigid will not move on its own

26

Unity GameObject Components
§ Rigidbody component

– The physical simulation of the GameObject
! Rigidbody rigid = go.GetComponent<Rigidbody>();

– Handles velocity, bounciness, friction, gravity, etc.
– Updates every FixedUpdate()

• This is exactly 50 times per second

– If Rigidbody isKinematic == true, the collider will move, but
position will not change automatically due to velocity

! rigid.isKinematic = true;! // rigid will not move on its own

– Colliders will not move without a Rigidbody component

26

Unity GameObject Components

27

Unity GameObject Components
§ (Script) components

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in
the Unity Inspector

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in
the Unity Inspector

• However, Unity will often alter the names of these fields a bit

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in
the Unity Inspector

• However, Unity will often alter the names of these fields a bit
– The class name ScopeExample becomes Scope Example (Script).

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in
the Unity Inspector

• However, Unity will often alter the names of these fields a bit
– The class name ScopeExample becomes Scope Example (Script).
– The variable trueOrFalse becomes True Or False.

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in
the Unity Inspector

• However, Unity will often alter the names of these fields a bit
– The class name ScopeExample becomes Scope Example (Script).
– The variable trueOrFalse becomes True Or False.
– The variable graduationAge becomes Graduation Age.

27

Unity GameObject Components
§ (Script) components

– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in
the Unity Inspector

• However, Unity will often alter the names of these fields a bit
– The class name ScopeExample becomes Scope Example (Script).
– The variable trueOrFalse becomes True Or False.
– The variable graduationAge becomes Graduation Age.
– The variable goldenRatio becomes Golden Ratio.

27

Chapter 19 – Summary

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types
– These all start with lowercase letters

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types
– These all start with lowercase letters

§ Learned naming conventions used in this book

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types
– These all start with lowercase letters

§ Learned naming conventions used in this book

§ Important Unity Variable Types

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types
– These all start with lowercase letters

§ Learned naming conventions used in this book

§ Important Unity Variable Types
– These all start with uppercase letters

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types
– These all start with lowercase letters

§ Learned naming conventions used in this book

§ Important Unity Variable Types
– These all start with uppercase letters

§ Learned several Unity GameObject components

28

Chapter 19 – Summary
§ Learned about declaring and defining C# variables

§ Learned several important C# variable types
– These all start with lowercase letters

§ Learned naming conventions used in this book

§ Important Unity Variable Types
– These all start with uppercase letters

§ Learned several Unity GameObject components

§ Next chapter will introduce you to Boolean
operations and the conditionals used to control C#
code

28

