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• int x;
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– bool verified = true;
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• Scientific notation is numbers in the format a*10b:  300 is 3*102

– Floating-point numbers are stored in the format a*2b

• 23 bits are used for the significand (the a part)
• 8 bits are used for the exponent (the b part)
• 1 bit determines whether the number is positive or negative

– Floats are inaccurate for large numbers and for numbers 
between -1 and 1

• There is no accurate float representation for 1 / 3

– Literal examples:     3.14f     123f     123.456f

– float notPreciselyOneThird = 1.0f / 3.0f;
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– Stores from no characters ("") to an entire novel
• Max length is 2 billion chars; 12,000 times the length of Hamlet

– string literals are surrounded by double quotes
– Literal examples:     "Hello"     ""     "\tTab"
– string theFirstLineOfHamlet = "Who's there?";

– You can access individual characters via bracket access
• char theCharW = theFirstLineOfHamlet[0];
• char questionMark = theFirstLineOfHamlet[11];

– The length of a string is accessed via .Length
• int len = theFirstLineOfHamlet.Length;

– Sets len to 12
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– Covered extensively in Chapter 25, "Classes"
– Already used in the HelloWorld project

public class HelloWorld : MonoBehaviour {

! void Start() {

! ! print("Hello World!");
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– Only convex Mesh Collider can collide with other Mesh Colliders
– Much, much slower than the other three types

– Unity physics are performed by the NVIDIA PhysX engine
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– Any C# class that you write
! HelloWorld hw = go.GetComponent<HelloWorld>();

– Because C# scripts are handled as components, several can 
be attached to the same GameObject

• This enables more object-oriented programming
• You'll see several examples throughout the book

– Public fields in your scripts will appear as editable fields in 
the Unity Inspector

• However, Unity will often alter the names of these fields a bit
– The class name ScopeExample becomes Scope Example (Script).
– The variable trueOrFalse becomes True Or False.
– The variable graduationAge becomes Graduation Age.
– The variable goldenRatio becomes Golden Ratio.
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§ Learned several important C# variable types
– These all start with lowercase letters

§ Learned naming conventions used in this book

§ Important Unity Variable Types
– These all start with uppercase letters

§ Learned several Unity GameObject components

§ Next chapter will introduce you to Boolean 
operations and the conditionals used to control C# 
code
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